
Self-Oscillatory Neck Propagation in Polymers

Sergey Bazhenov

Institute of Synthetic Polymeric Materials, Russian Academy of Sciences, Moscow 117393, Russia

Received 7 July 2009; accepted 27 April 2010
DOI 10.1002/app.32804
Published online 27 July 2010 in Wiley Online Library (wileyonlinelibrary.com).

ABSTRACT: The oscillatory neck propagation during
cold drawing of PET was studied. The mechanism of self-
oscillations is heat instability of neck propagation. Oscilla-
tions are observed at high velocities when the draw stress
increases with an increase in cross-head speed. Neck prop-
agation is described by three equations, which were solved
numerically. The solution of these equations predicts
appearance of oscillations at high elongation velocities in

agreement with experimental observations. The necessary
condition of appearance of oscillations in any polymer is
existence of some interval of cross-head speeds V, where
the draw stress decreases with an increase in V. VC 2010
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INTRODUCTION

The plastic yielding of polymers often starts from a
localized formation of a neck followed by its propa-
gation through the sample. The neck usually propa-
gates at a constant draw stress. However, in amor-
phous polyethyleneterephthalate (PET) at constant
cross-head speed oscillations of tensile stress were
observed.1,2 The stress oscillations are related with
oscillations of temperature and yielding velocity in
the neck.3 The local temperature in a neck reaches
90–140�C. This value exceeds the glass transition
temperature of PET (�75�C). The growth of temper-
ature was registered with low-molecular weight
powder dusted on the surface of the sample and
melted in high temperature areas.3 In addition, tem-
perature growth was registered with an infrared
camera.4–6

Oscillations appear only if the length of sample
exceeds some critical value.3 A neck in compara-
tively short samples initially propagates steadily
without oscillations. However, as the length of the
drawn material increases, regular oscillations appear
and after a time this process becomes firmly estab-
lished. Oscillations in comparatively long samples
appear right after initiation of the neck. The oscilla-
tory neck propagation is rather general phenomenon
observed in different linear polymers. For example,
in PET, PVC, PA-6, PP, and HDPE.7 However, the

critical sample length of appearance of oscillations
depends on polymer.
In PET and PVC, the critical length is 5–30 mm;

while for PP and HDPE, it is 0.9 and 7 m, respec-
tively.7 The critical length for PP and HDPE is so
high that oscillations are observed only if a sample
is tested in consequence with a spring. Spring accu-
mulates elastic energy and models testing of long
samples. Total energy stored by a sample and a
spring is described by the compliance of the system.
According to Kechekian, Andrianava, and Kargin, in
PET oscillations appear if the compliance of the sys-
tem (a sample and a spring) exceeds the critical
value.3 The compliance of a sample is proportional
to its length (for elastic material D ¼ L/E, where L
is the length of the sample, and E is elastic modulus
of the material).
On the first sight, it seems that oscillations may be

observed in any polymer yielding by propagation of
a localized neck if a sample is tested in consequence
with a spring. However, in polycarbonate a localized
neck is formed but oscillations do not appear. The
reason is not clear.
Mechanism of self-oscillations is discussed. Two

alternative mechanisms of self-oscillatory neck prop-
agation are proposed. The first is heat instability
related with growth of temperature in a narrow
transitional region between the neck and the non-
oriented polymer.3 Heating is caused by mechanical
work produced by testing machine and converted
into heat in the narrow transitional region. An alter-
native mechanism of self-oscillations is crystalliza-
tion of PET in neck.8,9

Barenblatt introduced a model of a transitional
region between the neck and non-oriented polymer
and assumed that orientation and conversion of
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mechanical work into heat occurs in this region.10

Temperature of the transitional region and tensile
stress were described by two first order differential
equations, and self-oscillations were explained by
instability of temperature and stress at neck propa-
gation.10 Barenblatt’s theory was developed further
and an analytical criterion of appearance of oscilla-
tions was derived.11 The comparison of the theory
and experiment revealed their dramatic
disagreement.12

The period of oscillations in PET at the later stage
of drawing usually becomes doubled.3 To explain
the period doubling, Toda described temperature of
a polymer with the modified heat diffusion equa-
tion.13 The goal of this article is modification of
Toda’s equations and quantitative comparison of the
theory with experimental data to prove thermal
mechanism of self-oscillations in PET.

EXPERIMENTAL

Commercial films of amorphous non-oriented PET
were tested in tension. The thickness of the film was
170 lm. Samples were straight strips cut from the
film. The width of samples was 5 mm, and their
gage length was varied from 5 to 100 mm. To initi-
ate necking, samples before testing were plastically
bent in their center. Oscillations appeared during
propagation of the neck. Samples were tested at
room temperature with a cross-head speed of 0.01–
1000 mm/min with a Shimadzu Autograph AGS-H
universal testing machine.

To measure the critical compliance Dc, sample was
drawn until the appearance of regular oscillations.
After that it was unloaded and loaded again to
determine the slope of the initial linear part of the
stress-elongation curve. The critical compliance Dc

was calculated from the slope as Dc ¼ DL/Dr;
where DL is the increment of the sample length, and

Dr is the increment of the engineering stress. The
critical length of unnecked samples was calculated
with the equation Lc ¼ DcE, where Dc is the deter-
mined critical compliance of samples and E ¼ 4 GPa
is the Young’s modulus of PET. Results of testing of
4 samples were averaged.
The draw stress was measured by tensile testing

of short samples when neck propagation was stable.
To measure the draw ratio of PET in a neck, several
points were painted with a marker at a distance of 3
mm along the work part of samples. The test
machine was stopped when the neck passed these
points. The draw ratio was measured as k ¼ L1/L0,
where L0 and L1 are the initial and the final distance
between the points.
Samples were photographed with a Canon EOS

20D camera. In addition, samples were fractured
along the neck propagation direction in liquid nitro-
gen, and the fracture surface was examined with a
Hitachi S-520 scanning electron microscope (SEM).

RESULTS

Figure 1 shows a typical PET tensile stress r – strain
e curve. The neck initially propagated steadily with-
out oscillations. However, at strain e � 220% regular
oscillations in stress appeared.
Figure 2 shows schematic drawing of a neck prop-

agating along a sample in the coordinate system
related with the upper grip of the testing machine.
On the Figure, the upper grip and non-oriented part
of the sample do not move, and the speed of the

Figure 1 Typical stress-strain curve of oscillatory neck
propagation in PET.

Figure 2 The model of a necked sample. V and u are the
cross-head speed and the neck propagation velocity.
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lower grip and the neck is V. The neck propagation
velocity u is the velocity of the boundary between
the neck and non-oriented parts of the sample.

Figure 3 shows photograph of the neck in PET
film. The arrow shows the direction of the neck
propagation. Initiation of oscillations leads to
appearance of alternating white and dark bands in
the neck. White bands correspond to fast neck prop-
agation when the temperature of the transitional
zone is high. Figure 4 shows the structure of white
bands in a scanning electron microscope. In the
white band a number of voids are observed. The
voids scatter light and are white on the Figure 3.

Figure 5 shows the draw stress rd of PET plotted
against the cross-head speed V. The plot of the draw

stress is described by an N-shape curve. At low V (in
the region I) rd increases with an increase in V. In con-
trast, at medium cross-head speeds (in the region II)
rd decreases with V, and at high V (in the region III) it
increases again. The decrease of rd in the region II is
caused by the growth of temperature with an increase
in V. The classical criterion of mechanical instability
in this region of cross-head speeds is fulfilled14:

dr
dV

< 0 (1)

Oscillations are expected in the region II in Figure
5. However, oscillatory neck propagation in PET is
observed both in the regions II and III. Figure 5
shows the cross-head speed region where the neck
propagation is oscillatory. In this work, oscillations
were observed at speeds from 10 to 1000 mm/min,
the highest cross-head speed of the Shimadzu testing
machine. At V < 120 mm/min stress oscillations are
registered with the testing machines. However, at
higher cross-head speeds oscillations appear but the
test machine does not register them due to insuffi-
cient time resolution. Occasionally, the minimum of
the draw stress in Figure 5 is observed at speeds
close to V � 120 mm/min. On this reason, the
author earlier erroneously concluded that Inequality
(1) determines the speed interval where oscillations
may appear.11 However, in PET oscillations exist at
higher V, in the region III in Figure 5.
There are two ways to register oscillations at high

cross-head speeds. The first is to record stress oscil-
lations with an oscilloscope3 or an impact test equip-
ment.9 The second method is visual checking if alter-
nating white and dark bands are observed in the
neck. Figure 6 shows the photograph of the PET

Figure 3 The photograph of a neck in PET drawn at
cross-head speed 50 mm/min. The arrow shows the direc-
tion of the neck propagation.

Figure 4 The SEM micrograph of pores in PET white
bands.

Figure 5 The draw stress rd plotted against the cross-
head speed V. Rectangles show the intervals of oscillatory
neck propagation observed in experiments and predicted
by Inequality (1) and eqs. (8), (10), and (11).
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film drawn at cross-head speed of 1000 mm/min.
Alternating dark and light bands reveal existence of
oscillations. It is worth mentioning that at this veloc-
ity the neck front was angle-shaped. Stress oscilla-
tions in PET were registered with an oscilloscope at
the cross-head speed of V ¼ 5000 mm/min,3 and
with an impact equipment at V ¼ 72 and 220 m/
min.9

The mechanism of oscillations in PET is different
from simple mechanical instability, the criterion of
which is described by Inequality (1). To explain
appearance of oscillations in the region III in Figure
5, below equations describing self-oscillatory neck
propagation are derived. These equations are similar
to the Barenblatt-Toda’s equations modified to con-
sider the effect of the draw ratio k on the heating of
a polymer.

Figure 7 shows the draw ratio k in neck plotted
against the cross-head speed V. The draw ratio is
equal to 4 if V < 70 mm/min, and increases at
higher V. Below an increase in k was neglected.

Basic equations

Stress

Assuming that polymer behavior is linear elastic
everywhere but for the negligibly thin transitional
region between the neck and the non-oriented part
of the sample (Fig. 2), elastic elongation is given by:

DLe ¼ Lr
E

þ Lnrn

En
¼ Dr; (2)

where subscript n corresponds to the neck, L and Ln
represent the lengths of the non-oriented and necked
parts of the sample, E elastic modulus and r stress,

D compliance of the sample. Stress in neck rn is
given by:

rn ¼ S

Sn
r ¼ kr; (3)

where k ¼ S/Sn ¼ Ln/L0 is the draw ratio of the
polymer in neck, and L0 is its initial length. Hence,
compliance is determined by Equation:

D ¼ L

E
þ kLn

En
(4)

Total elongation of a sample is equal to the sum
of elastic and plastic components:

DL ¼ DLe þ DLp (5)

Derivative of this equation is:

V ¼ _ee þ _ep (6)

where V ¼ dDL
dt is the cross head speed (Fig. 2),

_ee ¼ dDLe
dt and _ep ¼ dDLp

dt - velocities of elastic and plas-
tic deformations.
If the transitional region velocity is u, the decrease

of the length of non-oriented part of sample for time
dt is udt and the increment of the neck length is uk
dt. Hence the increment of the plastic elongation dLp
is:

dLp ¼ ðk� 1Þ u dt (7)

Combination of eqs. (2), (6), and (7) gives:

dr
dt

¼ V � ðk� 1Þu
D

(8)

Figure 6 The photograph of the PET film drawn at 1000
mm/min cross-head speed. The neck propagated from left
to right. The neck front is not straight and the neck is
buckled due to heating.

Figure 7 The PET draw ratio in neck k plotted against
the cross-head speed V.

SELF-OSCILLATORY NECK PROPAGATION 657

Journal of Applied Polymer Science DOI 10.1002/app



If the neck does not move, u ¼ 0 and eq. (8) corre-
sponds to the Hooke’s law at constant cross-head
speed V. If u= 0, plastic strain ep replaces elastic strain
ee and the stress-strain curve deviates from linear.

At k ¼ 2 eq. (8) coincides with that used by Bare-
nblatt10 and Toda.13 However, typical value of k for
PET is from 4 to 6 (Fig. 7).

Temperature

Putting the origin of the coordinate system in the
moving transitional region as shown in Figure 2,
Toda described temperature of polymer by equa-
tion13:

qc
@T

@t
¼ k

@2T

@x2
� qcu

@T

@x2
� b

1

w
þ 1

h

8>:
9>;ðT � T0Þ; (9)

þ S

x
ru for 0 � x � Dx:

where T(x, t) and T0 represent temperatures of a
polymer and a surrounding air respectively, q den-
sity, c heat capacity, k and b the thermal conductiv-
ity of the polymer and the heat transfer coefficient to
the surrounding air (Q ¼ bS1 (T-T0)], w and h the
width and the thickness of the sample, x the direc-
tion of neck propagation, S the original cross-sec-
tional area, Q the heat transferred to the surround-
ings, x and S1 the volume and surface area of the
transitional region.

The first and the second terms on the right-hand
side of eq. (9) are heat conductivity equation in mov-
ing coordinate system, the third term describes the
heat transfer from the polymer to the surrounding
air, and the last term describes the heat produced in
the transitional zone per unit time. Below the last
term describing heat produced in the transition
region is corrected.

If the neck propagates steadily with a constant ve-
locity u, the produced mechanical work is equal to a
product of the applied force and the increment in
plastic elongation dA ¼ F dLp. Taking into account
eq. (7), dA ¼ F (k � 1) udt and the produced me-
chanical work is rwh(k�1)u. If the fraction of me-
chanical work converted into heat is a, and the
thickness of sample h is negligible in comparison
with its width w, and polymer temperature is
described by Equation:

@

@t
¼ a2

@2T

@x2
þ u

@T

@x
� 2bðT � T0Þ

qch
þ dðxÞ aðk� 1Þru

qc

(10)

where a ¼
ffiffiffiffi
k
cq

q
, d(x) the Dirac’s d-function and coeffi-

cient 2 in the third term on the right-hand side of
eq. (3) accounts for two surfaces of a film.

According to Ref. 15 for PET a is close to 1 and
almost all produced mechanical work is converted
into heat. Coefficient a depends on polymer and
cross-head speed, varying from 0.6 to 1.12. The typi-
cal a value for different polymers is �0.8. The heat
may exceed produced mechanical work due to latent
crystallization heat. For PET a varies from 0.86 to
1.12, and calculations were performed for a ¼ 1.
Following11,13, the rate of plastic deformation in

the transitional zone is described by the Eyring
equation:

uðtÞ ¼ e0
�
h expðar�U

RT
Þ; (11)

where _e0 �1013; U is the activation energy; a is the
activation volume of the drawing process; R ¼ 8.31
J/(K mol) is the gas constant; T is the temperature of
the transitional region where the polymer is
yielding.

Method of calculation

Tensile drawing of a PET sample with constant
cross-head speed was modeled by numerical solu-
tion of eqs. (8), (10), and (11) at V ¼ Const, a ¼ 1
and different draw ratios k. The surrounding air
temperature T0 was 20�C, the cross-head speed V
was changed from 0.01 to 1000 mm/min. The
boundary conditions were T|x!1 ¼ 0 and T|x!�1
¼ 0. The compliance of samples and draw ratio k at
calculations were constants.
The following values of the PET properties11 were

used: q ¼ 1332 kg m�3; k ¼ 0.14 Wt m�1K�1; c ¼
1300 J kg�1K�1; E ¼ 4 GPa; b ¼ 50 Wt m�2 K�1. Pa-
rameters of the Eyring equation are: U ¼ 122 kJ/
mol; a ¼ 8.412 � 10�4 m3 mol�1. The thickness of
samples h ¼ 0.17 mm.
Equations (8), (10), and (11) were solved by the

method of finite differences. Calculation procedure
was the implicit four-point scheme, which is stable
at all time and coordinate increments Dt and Dx. The
increment of time Dt was varied during calculations.
If the yield velocity for the time Dt increased by
more than 2%, Dt was divided by 2 and data were
recalculated. If the change in yield velocity for Dt
was less than 10�15, Dt was doubled.
For steady neck propagation @T

@t ¼ 0, and the solu-
tion of eq. (10) is T(x) ¼ Ce�x/d. The numerical
solution of eq. (10) for oscillatory neck propagation
was determined in 1997 points xi for intervals �7d
�xi� 0 and 0 �xi� 7d1, where xi ¼ �7d þ i Dx, Dx ¼
7d/1000 or Dx ¼ 7d1/1000 (d and d1 correspond to
non-oriented region and the neck, respectively). The
temperature in the points x ¼ 7d and x ¼ �7d1 was
put T ¼ T0. The accuracy of the calculation method
was checked by the comparison of the temperature
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distribution for steady neck propagation with an an-
alytical solution of eq. (10), and the difference was
less than 0.01%.

Numerical results

Figure 8 shows the calculated drawing stress rd

plotted against the cross-head speed V at different
draw ratios k. Calculations of rd were performed at
low elastic compliance D when neck propagation is
steady. The drawing stress for k � 2 increases
monotonously with an increase in V. The shape of
curves at k > 2.1 changes and becomes N-shaped.
The draw stress rd at medium cross-head speeds
decreases with V.

The drawing stress in Figure 8 decreases with an
increase in the draw ratio k. This is explained by
more significant increase of temperature at higher
draw ratios. The temperature growth at k � 2 is not
significant and the draw stress monotonously
increases with an increase in V. At higher k lower
amount of ‘‘cold’’ polymer comes into the transi-
tional zone while the produced mechanical work
remains the same. As a result, temperature is higher.

Figure 8 shows also the calculated amplitudes of
stress oscillations for k ¼ 4. The amplitude of oscilla-
tions decreases with an increase in the cross-head
speed V. Thus, theory predicts existence of oscilla-
tions both at intermediate cross-head speeds (in the
region II in Fig. 5) and at high speeds (in the region
III). For k � 2 drd/dV > 0 at any V, and T, u and rd

were steady even at very high D. Hence, oscillations
appear if in some interval of cross-head speeds V
stress rd decreases with an increase in V and the In-
equality (1) is fulfilled. Inequality (1) is the necessary

condition of oscillations appearance. However, the
cross-head speed interval of oscillation is not
described by Inequality (1). Oscillations are observed
both at intermediate and high cross-head speeds (in
the regions II and III in Fig. 5). Thus, the Inequality
(1) is not the criterion of oscillations appearance; it is
the necessary condition of oscillations.
Figure 9 shows the critical sample length Lc (at

which the oscillations appear) plotted against the
cross-head speed V. The critical length Lc decreases
with an increase in V. The theoretical values of Lc
for k ¼ 4 (the curve 2) are approximately twice
higher than the experimental ones (the curve 1).
Thus, the experimental and the theoretical values of
Lc are in decent agreement. Hence, eqs. (8), (10), and
(11) describe the oscillatory neck propagation in PET
and the mechanism of oscillations is thermal insta-
bility of neck propagation. For comparison, the
curve 3 shows Lc values calculated by Bazhenov and
Kechekian according to modified Barenblatt theory.11

The curve 3 does not describe the experimental data.

DISCUSSION

The present article represents the third subsequent
step in development of the theory of oscillatory neck
propagation in polymers. The first step was done by
Barenblatt10 and the second by Toda.13 To clarify the
difference with these works, below Barenblatt and
Toda’s equations are considered. Barenblatt showed
the direction of the theory development. His goal
was explanation of the effect of self-oscillations and
this problem was solved.
The neck propagation in polymers is similar to

propagation of a flame wave. The theory of flame

Figure 8 The theoretical draw stress rd plotted against
the cross-head speed V for k ¼ 2, 3, 4, 5, and 6. The bars
represent the amplitude of stress oscillations for k ¼ 4.

Figure 9 The critical length Lc of samples plotted against
the cross-head speed V. Curve 1: experimental data; curve
2: the present theory; curve 3: modified Barenblatt
theory.11
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wave propagation is based on two equations: the
heat diffusion equation and the diffusion equation.
This theory was found in the end of XIX century by
Mikhelson16 and developed further by several
researchers. The main results are described in the
book ‘‘Mathematical theory of combustion and
explosion,’’ and Barenblatt is its co-author.18 How-
ever, Barenblatt did not apply the classical flame
propagation theory to the neck propagation and
developed a model simplifying the heat diffusion
equation.10 As a result, neck propagation was
described by two differential equations:

dr
dt

¼ V � u

D
; (12a)

dT

dt
¼ q� nðT � T0Þ; (12b)

where q ¼ Q
c � 1

cd uðT � T0Þ; d is the thickness of the
transitional zone; n ¼ bS

xc; c is the coefficient, corre-
sponding to the shape of the transitional zone (its
value is close to unity).

Analysis of stability of eqs. (12a) and (12b) is sim-
ple. This was done in11 and the results of calculation
of the critical sample length Lc for PET are shown by
the curve 3 in Figure 9. The theoretical and experi-
mental values of Lc disagree, and the author errone-
ously concluded that the nature of phenomenon is
not clear.12

The present work shows that the disagreement is
caused by the inaccuracy of eq. (12b). Usually math-
ematically incorrect methods give quite close ap-
proximate solution of a problem. However, this case
is the exclusion and eq. (12b) can not be used for
analysis of neck propagation stability.

Equation (8) corrects eq. (12a). However, more im-
portant is the consequent correction of the forth
term in eq. (9). This term describes heat production.
Simple analysis of energy balance shows that the
temperature increase in the transitional zone at high
V, when heat losses to surroundings may be
neglected, is:

DT ¼ T � T0 ¼ rðk� 1Þ
qc

(13)

For PET at k ¼ 4 DT � 70�C. The value of DT is
proportional to the product (k � 1) r and does not
depend on V (at high cross-head speeds). The factor
(k � 1) in eq. (9) is lost. For PET k � 1 � 3 and the
underestimation of temperature growth by eq. (12b)
is 3-fold. For computer calculations Toda multiplied
this term by 2.5 to get reasonable temperature in the
neck. Fitting parameter of 2.5 corresponds to k ¼ 3.5
that is close to the neck draw ratio of PET. Evi-
dently, for other polymers with different k eq. (9) is
inaccurate. Particularly, for polycarbonate k ¼ 1.8

and eq. (9) at the fitting factor of 2.5 predicts appear-
ance of oscillations while eqs. (8) and (10) predict
steady neck propagation in agreement with experi-
mental observations. Thus, there are two inaccura-
cies in Barenblatt’s equations. Toda corrected the
first one and the present article corrects the second.
It is worth mentioning that eqs. (8) and (10) do not
have any fitting parameters.
Self-oscillations appear at high velocities when

the draw stress increases with the cross-head
speed. This is highly unexpected result. It means
that self-oscillations caused by heat instability are
essentially different from any other self-oscillations.
There are several instability phenomena observed
in mechanics, electricity, biology, and chemistry.
However, these oscillations may be divided just on
few mathematical classes. The heat instability rep-
resents the new one and is essentially different
from any mechanical instability. Particularly, it
contradicts our intuition, and existence of oscilla-
tion at high draw velocities is difficult to
understand.
Some additional points may be noticed. It is not

surprising that testing machine stops recording
stress oscillation at high frequencies. However, it
happened in the ‘‘worst point’’, at the cross-head
speed corresponding to the minimum of the draw
stress (Fig. 5). This resulted in erroneous conclusion
that the interval of cross-head speeds with oscilla-
tory neck propagation is determined by the criterion
of mechanical instability (1).
Inequality (1) does not determine the interval of

cross-head speeds where oscillations may appear. It
is the necessary condition of oscillatory neck propa-
gation. If it is not fulfilled at least in some interval
of cross-head speeds, oscillation in the polymer can
not be observed.
In the present work, several essential points

were not considered. Particularly, the transition of
PET from glassy to rubber-like state and crystalliza-
tion heat were not taken into account. The transi-
tional zone was assumed very thin. In addition, the
reason of appearance of oscillations at high cross-
head speeds in PET was not clearly explained. The
explanation of oscillations at high cross-head speeds
is formally mathematical, and the reason of oscilla-
tions remains unclear. The physical nature of the
critical length (critical compliance or elastic
energy)17 of sample and relation of the critical
length with material properties were not deter-
mined. Thus, the theory of oscillatory neck propaga-
tion was not developed yet. Despite this, it is clear
that the mechanism of self-oscillations is heat insta-
bility, and eqs. (8), (10), and (11) may be the founda-
tion of the theory.
In addition, the following point may be men-

tioned. The heat conductivity of polymers is
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�1000-folds lower than that of metals. As a result,
the temperature growth in polymers is significant
if the neck appears and the testing speed is not
very low. For example, an increase of temperature
in PET at a cross-head speed of V ¼ 10 mm/min
is �20�C. This value depends on polymer, but for
V ¼ 10 mm/min it is quite typical. Temperature
increases both at steady and oscillatory neck prop-
agation. The temperature increase may be
neglected only at low cross-head speeds (V < 2
mm/min) when the test time of a sample may
exceed an hour.

CONCLUSIONS

1. The mechanism of self-oscillations is heat insta-
bility of neck propagation.

2. Equations describing stress and temperature
in a polymer at neck propagation were
derived.

3. Neck propagation is oscillatory at high cross-
head speeds when the draw stress increases
with an increase in cross-head speed.

4. Oscillations in a polymer may be observed if at
some cross-head speed Inequality (1) is ful-
filled. The interval of oscillations is not
described by Inequality (1).

5. Theoretical and experimental values of the crit-
ical sample lengths agree.

6. Temperature increase in the neck is propor-
tional to the factor (k � 1).
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